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Abstract. A non-linear Schrodinger equation (NLSE)  with a non-isospectral Lax pair and 
variable coefficients is studied. This equation is shown to be an integrability condition for 
an A K N S  system, a r-Riccati system and a Lax pair. These three systems are proved to 
be equivalent. They are all invariant under some generalisation of the Konno-Wadati 
transformation. Related to this ( N L S E )  there is also a variable-coefficients evolution 
equation for the function r, derived from the r-Riccati system. A Backlund transformation 
for this r equation has been constructed. With this, a new Backlund transformation for 
the (NLSE)  is presented so that successive generation of new solutions is reduced to 
integration only. 

1. Introduction 

The purpose of this paper is to study a generalisation of the well known soliton 
equation, the non-linear Schrodinger equation ( NLSE) [ 1-31 

iq, + qxx +2q2q* = 0. (1.1) 

4, = ( k o / 2 ) ( q x x + 2 q 2 q * ) + k l q x + ( 2 k * + h l ) q  (1.2) 

To be more specific, we shall consider the following evolution equation for q ( x ,  t ) :  

where ko ,  k , ,  k2 and h ,  are some functions of x and t. For ko = 2i, k ,  = k,  = h l  = 0, it 
red,uces to the NLSE (1.1). Thus it is a variable-coefficient NLSE and, as we shall see, 
it is also non-isospectral. We call it the generalised non-linear Schrodinger equation 
(GNLSE). This equation has been treated by Calogero and  Degasperis [4, § 6.21 using 
their method of generalised Wronskian techniques and  by Newel1 [ 5 ] .  One may also 
consult [6,7] for further details. From another point of view, Riccati equations for 
the ratios of components of the wavefunction of the NLSE are derived from the linear 
equations for the wavefunctions, and the Backlund transformations ( BT) are obtained 
from suitable automorphisms of these Riccati equations. This approach has been 
developed by Kono and Wadati [8], Chen [9] and  Fordy [lo],  among others. In [8] 
the automorphism introduced is r-. l / r * .  One of the purposes of the present paper 
is to demonstrate that the Riccati equations for r (one in x and one in t )  are both 
invariant under certain transformations induced by the above automorphism for the 
GNLSE. Furthermore, we shall construct a new BT for the GNLSE which can be considered 
as an  extension and improvement of the one given in [8]. There, a BT was given for 
the constant-coefficient and  isospectral NLSE. However, that BT has a drawback in 
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that, if we apply it twice, it gives us back the original solution so that successive 
generation of new solutions is impossible. Our new BT for the G N L S E  will successively 
generate a hierarchy of solutions via integration only, overcoming the difficulty inherent 
in the BT in [8]. It is of interest to note that the time evolution equation for r can be 
expressed in terms of r and its derivatives only, and the BT for the GNLSE is closely 
related to the solution of this evolution equation. Therefore, a BT' for this equation 
will first be presented before constructing the new BT for the GNLSE.  

2. A generalised NLSE 

Consider the general AKNS system 

4 l X  = 7741 + q42 

4 2 x  = r41- 7742 

lCr1r=A(x, t ,  7 7 ) 4 l + B ( X ,  t, 77142 

42r = C(x, f ,  77)h -44 t ,  77142 

( 2 . 3 )  

( 2 . 4 )  

where 77 is a complex function of t satisfying the following linear-type equation 
(non-isospectral condition): 

77, = hl(t177 + h 2 ( f )  ( 2 . 5 )  

where h,( t )  and h2( t )  are some known complex functions of t. 
The integrability conditions of equations ( 2 . 1 ) - ( 2 . 4 )  are 

77, - A ,  + qC - rB = 0 

qr - Bx + 277B - 2 q A  = 0 

rr - Cx + 2 r A  - 277C = 0. 

( 2 . 6 )  

( 2 . 7 )  

( 2 . 8 )  

We choose r = -q*, and A, B and C in ( 2 . 6 ) - ( 2 . 8 )  to be the following polynomials 
in 77:  

A = f k , J q q * + 2 ~ ~ )  + k 1 7  + k2 ( 2 . 9 )  

B = t k O ( q x + 2 7 7 q ) + k 1 q  ( 2 . 1 0 )  

C = f k o ( q : - 2 ~ q * ) -  klq" ( 2 . 1 1 )  

k , = k , ( x , t ) = h , ( r ) x + l , ( t )  j = 1 , 2  ( 2 . 1 2 )  

where l , ( f )  are some arbitrary complex functions of t. Then ( 2 . 6 ) - ( 2 . 8 )  gives the 
equation 

91 = ~ k o ( q x x + 2 q 2 q * . ) + k , q x + ( 2 k 2 + h , ) q .  ( 2 . 1 3 )  

This is just the GNLSE ( 1 . 2 ) .  It is known that the following theorem holds. 

Theorem 1 .  The A K N S  system ( 2 . 1 ) - ( 2 . 5 ) ,  with ( 2 . 9 ) - ( 2 . 1 2 ) ,  is integrable if and only 
if the functions q satisfy equation ( 2 . 1 3 ) .  
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3. r-Riccati equation system 

For convenience, we will transform the A K N S  system (2.1)-(2.4) into an equivalent 
system, called the r-Riccati equation system (or r system). 

Following [8], we introduce a new function 

l- = *l/*2. (3.1) 

Taking derivatives of (3.1) with respect to x and t respectively and using (2.1)-(2.4), 
we get the following r system: 

rx = 277r + q - rr2 
r, = 2 ~ r  + B - cr2. 

(3.2) 

(3.3) 

By directly verifying the equality Tx, = r,,, one finds that (3.2) and (3.3) have the same 
integrability conditions (2.6)-(2.8) as the A K N S  system (2.1)-(2.4). 

Now, suppose that equations (3.2) and (3.3), with r =  -q*,  are integrable, then 
q, A, B and C can be determined by (2.13) and (2.9)-(2.11), respectively. We may 
apply these quantities to the system (3.2) and (3.3) and solve it for r; then we define 
two functions G1 and (Cl2 by the two equations 

Hence we get 

(3.4) 

(3.5) 

I- = $ J * 2  (3.7) 

$2x = r41- 7?$2 (3.8) 

where $:= $2(x0, t ) ,  and will be determined later. Substituting (3.7) into (3.2) and 
using (3.8), we obtain the equation 

C L l X  = 77$1+ q d J 2 .  (3.9) 

Differentiating (3.6) with respect to t and applying (3.3) and (3.7) gives 

$2, = ctCIl-AdJ*+[((L:,/cL~)-(C~-A)x-X,,l(Cl2. 

$;,/$: = (cr -A)x=% 

We now choose t,bt to satisfy 

and (3.10) then leads to 

(3.10) 

(3.11) 

* 2 1 =  c*, - 4 2 .  (3.12) 

Substituting (3.7) into (3.3) and applying (3.12), we get another equation 

$1, = 4, + w 2 .  (3.13) 

Equations (3.8), (3.9), (3.12) and (3.13) are nothing other than the A K N S  system 
(2.1 )- (2.4). 

The above discussion means that the A K N S  system (2.1)-(2.4) and the r system 
(3.2) and (3.3) are equivalent under the transformation (3.1), (3.5) and (3.6). We 
encapsulate this result in the following theorem. 
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Theorem 2. The A K N S  system (2.1) and (2.4) and the r system (3.2) and (3.3) are 
equivalent under the transformation (3.1), (3.5) and (3.6). 

Substituting r = -q* into (3.2) and (2.9)-(2.11) into (3.3), we get 

r, = 277r + + q*r2 (3.14) 

r, = +k,{r,, +2r[qq* - (q*r),]>+ k l r ,  +2k2r .  (3.15) 

By theorem 2, this r system possesses the same integrability condition GNLSE (2.13) 
as the following A K N S  system: 

$1, = 7$l+ 4$2 (3.16) 

$2, = -4**1-  77*2 (3.17) 

$1,=A(x, t, 77)$1+B(X, t ,  7 ) $ 2  (3.18) 

$2, = C(x, t, 77)h - A ( &  t ,  (3.19) 

We will use this r system to study the problem of solving the GNLSE (2.13). 

4. Invariance of the r system 

Solving equation (3.14) for q, we get 

Let 

r' = i / r *  (4.2) 

and substitute this r' into (4.1) to obtain a new q, denoted by q' 

(4.3) 

In [8], it was pointed out that (3.14) is invariant under the transformation (4.2) and 
(4.3), we now show that (3.15) is also invariant under these transformations. 

Substituting (4.2) and (4.3) into (3.15), we have 

- ( r * ) -'r = 4 k,{ - ( r * ) - 2r :, + 2 ( r * ) -3 ( r : ) * 
+ (2/r*)[qq* + qg* + q * g  + 
- kl(r*)-*r:+2k2/r* 

r, = -fk~{r,,+2r[qq*-(q*r).+p]}+ kTr , -2k f r  (4.4) 

+ (q*/r* + g*/r*),l} 

or, multiplying the equation by ( -PP2 and taking the complex conjugate, 

where 

= [r-1(-r,+q+~*r2+a)],+q*a+~g*+aa*. 
We will show that the quantity p in  (4.5) is null. 

(4.5) 
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Substituting (3.14) into (4.5) gives 

=(a/r),+q*a+qa*+aa*. (4.6) 

By (4.3) and (3.14), we have 

(a/r), = -2(77+77*)(rxr*+rr~)/(1+rr*)2 
= -2( 77 + 77*)[(q*r + qr*)( 1 + rr*) +2( 77 + 77*)rr*]/( 1 +rr*)' 
= -(q*a+ qa*+ (+a*). (4.7) 

Substitution of (4.7) into (4.6) leads to 

p = o .  (4.8) 

From now on, we assume that k o ,  k ,  and k2 possess the properties 

k$ = - ko kT = kl  k T = - k 2 .  (4.9) 

Under condition (4.9) and result (4.8), we see that (4.4) coincides with (3.15). Thus, 
we have arrived at the following theorem. 

Theorem 3. The r system (3.14) and (3.15) is invariant under the transformation (4.2) 
and (4.3). 

From theorems 1-3, we obtain a fourth theorem. 

Theorem 4. Assume that q = q ( x ,  t )  is a solution of the GNLSE (2.13) and r is a solution 
of the system (3.14) and (3.15), then the function q '= q'(x,  t )  determined by (4.3) 
is also a solution of the GNLSE (2.13). 

Equations (4.2) and (4.3) comprise a BT for the NLSE (1.1) proposed in [8]. We know 
that it has a drawback in practice as mentioned in the introduction. We will now 
construct a new BT to make up for this deficiency. 

5. Lax pair corresponding to the CNLSE 

For the purpose of constructing a BT for the GNLSE, we need to construct a Lax pair 
corresponding to the GNLSE and to prove the equivalence between this Lax pair and 
the A K N S  system (3.16)-(3.19). 

Solving for from (3.17), we get 

$ 1  = - ( + 2 x  + 7 7 $ 2 ) / q *  (5.1) 

and substituting (5.1) into (3.16) we obtain the Schrodinger equation 

+2xx - ( s x * / 4 * ) + 2 x  + (44* - 774$/4*)$2 = T2+2 

while substituting (5.1) into (3.19) gives 

(5.2) 

$2, = - (A + 77c/ q * ) + 2  - ( C /  q * ) $ 2 x  (5.3) 

where A and C are defined by (2.9) and (2.1 l ) ,  respectively. By directly verifying the 
integrability condition +2xx, = ( L Z r x x  of (5.2) and (5.3), and defining 

B = (4 - 77, - qC) /q*  (5.4) 
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or, equivalently, 

77, -A, + qC + q*B=O (5.5) 

[ ( q T + C X + 2 q * A + 2 r l C ) / q * ] ,  = O  (5.6) 

s(sT+Cx)+q*(q,-B,)-277rl, - [ r l (qT+Cx+277C) lq* l . r  =o .  (5.7) 

we obtain the two equalities 

By taking the integration constant in (5.6) to be zero, we get 

qT + C, + 2 q *A + 2 TC = 0. 

Applying (5.8) to (5.7) gives 

9, - B, + 2 77B - 2 q A  = 0. 

Equations (5.5), (5.8) and (5.9) are the integrability conditions of (5.2) and (5.3). 
They coincide with (2.6)-(2.8) with r = -q* in the latter. Therefore, (5.2) and (5.3) 
possess the GNLSE (2.13) as an  integrability condition. We call (5.2) and (5.3) the Lax 
pair corresponding to the GNLSE (2.13). 

We now show that the AKNS system (3.16)-(3.19) can be derived from the Lax pair 
(5.2) and (5.3). Assuming that (5.2) and (5.3) are integrable, then the quantities q, A, B 
and C can be determined by (2.13) and (2.9)-(2.11). Letting (c12 be a solution of (5.2) 
and (5.3) and defining 

91= - ( U x  + 7792)/q* (5.10) 

then we have 

9 2 x  = -4*+1- 7792. (5.11) 

Taking the derivative of (5.10) with respect to x and using (5.2), we get 

9lx = 779l+ q92. (5.12) 

Substituting (5.11) into (5.3) gives 

$ 2 ,  = c91 - A92. (5.13) 

Taking the derivative of (5.10) with respect to t and using (5.4), we obtain 

91, =A91 + B92. (5.14) 

Thus we have derived the A K N S  system (3.16)-(3.19) from the Lax pair (5.2) and (5.3). 
We state this result in another theorem. 

Theorem 5. The Lax pair (5.2) and (5.3) and the A K N S  system (3.16)-(3.19) are 
equivalent under the transformation (5.1). 

Theorems 2 and 5 yield a sixth theorem. 

Theorem 6. The Lax pair (5.2)-(5.3) and the r system (3.14) and (3.15) are equivalent 
under the transformation 

= -(92, + 7792)/(q*92) (=  + I /  9 2 )  (5.15) 

or 

(5.16) 

where 9; satisfies the condition (3.11). 
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6. BT for the r evolution equation and the CNLSE 

In  this section, we will construct a BT for the GNLSE (2.13) from the r system (3.14) 
and (3.15) and the Lax pair (5.2) and (5.3). 

Let q = q(x,  t )  be a known solution of the GNLSE (2.13) and T be a corresponding 
solution of the r system (3.14) and (3.15); then by theorem 6 the Lax pair (5.2) and 
(5.3) has a solution (CIz defined by (5.16). Substituting the corresponding q’ and r‘ 
defined by (4.2) and (4.3) into (5.16), we get a new &, denoted by $; 

+; = $4’ exp [ - [:( q’*T’ + 7 7 )  dx]  

where $io is a function of t satisfying the equation (condition (3.11)) 

= $ko( C‘T’ - A’) = x  

or 

$io= $;(x,, to)  [ ‘exp(C‘r’-A’)x=xodf 1 

and A’ and C’ are obtained from (2.9) and (2.1 1) by replacing q by q’. From theorems 
3 and 6 we then have the following. 

Theorem 7. The Lax pair (5.2) and (5.3) is invariant under the transformations (4.3) 
and (6.1), i.e. the following two equalities hold: 

9i,-(s:*/9‘*)$kx+(9‘4’*-774:*/4’*)$;= T2$i  (6.3) 

$;,= -(A‘+ 77C‘/q’*)$)(C,-(C’/q’*)Q;x. (6.4) 

By this theorem, the Schrodinger equation (6.3) has a solution (6.1), but then, according 
to a well known property of second-order linear differential equations, (6.3) will possess 
a general solution 

4 2  = (C lP  + a$; (6.5) 

where 

p = q‘*u dx 

v = exp ( 2 jx: ( q ’*Y’ + 77 ) dx)  (6.7) 

and C, and C, are functions of t. We will show that C, and C, can be suitably chosen 
such that (6.5) satisfies (6.4). 

Substituting (6.5) into (6.4) and recalling that $; satisfies (6.4), we get 

c,,p + C*, = -C,(pl + C ’ V ) .  (6.8) 

Substituting (6.1) into (6.4), cancelling the exponentials on both sides of the equality 
and then taking the derivative with respect to x, we obtain the conservation law 

(q‘*r/+ 77) ,  + (c’ri- = 0. (6.9) 
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Taking the derivative of (6.6) with respect to t and using (6.9), we have 

( ~ ~ * v - ~ ( C ’ T ’ - A ’ ) I : , ,  q‘*v) dx 
p r  = 5: 

= I:, 6 q:*v dx -2  ( C ’ F  A ’ ) ~ ’ * Y  dx  + 2( C’Y- A’) i.=xop. (6.10) 

Noting that q ‘ ,  A’, B‘ and C’ satisfy (2.13) and (2.9)-(2.11), integrating by parts and 
using (4.9) we have 

~ x ~ q : X v d x = - C ’ v ~ ~ , l + 2  q’*(C’T’-A’)vdx. (6.11) I,: 
Substituting (6.11) into (6.10) gives 

p, = -cv+ c ~ ~ x o + ~ ~ c ~ r ~ - ~ ~ ~ x ~ x o p  (6.12) 

and substituting (6.10) into (6.8) leads to 

Clrp + C,, = -C1[C:=,,+2(C‘T’-A’).=,,p]. (6.13) 

Comparing the two sides of (6.13), we obtain the following ordinary differential 
equations for C, and C,: 

Cl, = -2(C’r’-A’)x=xoCl (6.14) 

Czr = -c:=,,c,. (6.15) 

Solving (6.14) and (6.15) and using (6.2), we find that 

(6.16) 

(6.17) 

where a1 and cy2  are arbitrary constants. 
Therefore, if we take the two functions C, and C2 in (6.5) to be (6.16) and (6.17), 

then (6.5), which satisfies (6.3), will also satisfy equation (6.4). This actually constitutes 
a proof of the following theorem. 

Theorem 8. The Lax pair (5.2) and (5.3) is invariant under the transformations (4.3) 
and (6.5), where the (L; in (6.5) is determined by (6.1), and C, and C, are determined 
by (6.16) and (6.17). 

Now substitute (6.5) and (4.3) into (5.15) to obtain a new r, denoted by 1.: 
r=- -Clexp[2[ I ($+q)  1 . 1  dx] 

r* 

(6.18) 

where we have made the substitution (4.2) on the right-hand side. Thus, from theorems 
3 ,4 ,6  and 8, we have the following. 
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Theorem 9. If r is a solution of the r system (3.14) and (3.15) corresponding to q, 
which is a solution of the GNLSE (2.13), then the function f., defined by (6.18), is also 
a solution of (3.14) and (3.15), corresponding to g’ ,  where q’ is determined by r in 
(4.3) and is another solution of the GNLSE (2.13). 

This theorem indicates that (4.3) is a BT for the GNLSE (2.13), and (6.18) is a BT 

for the solution r of the r system (3.14) and (3.15). Note that when (4.1), derived 
from (3.14), is substituted into (3.15), q is eliminated and an evolution equation for 
r results. Thus, (6.18) is actually on auto-sr for (3.15). From these BT, starting from 
an initial solution q ,  (seed solution) of (2.13), we can obtain two hierarchies of infinitely 
many solutions of (2.13) and (3.14) and (3.15) without solving any differential equation 
except that for r, , Denoting the two hierarchies of solutions by 

q l , q 2 , q 3 , . . ‘  

r l ,  r 2 ,  r 3 ,  * * *  

then the procedure of obtaining these solutions can be depicted in the diagram 

(6.19) 

(6.20) 

(6.21) 

The transformation formula for r in (6.18) is a generalisation of the Konno-Wadati 
formula (4.2), since if C, = 0 then (6.18) reduces to (4.2). From the discussions above 
we see that the role which the r equation (3.15) and (4.1) plays is very similar to the 
q2-dependent modified Korteweg-de Vries equation in relation to the K d v  equation 
[ll-131. Hence, it may well be called the 7-dependent modified GNLSE. 
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